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Abstract 

Reactions of [Cp’RuCl], (Cp’ = q’-C,Me$ with NaSR (R = ‘Pr, ‘Bu, 2,6-Me&H,) in THF afforded dinuclear Run complexes 
with two bridging thiolate ligands [Cp*Ru(p-SR),RuCp’l(3). An X-ray analysis of 3c (R = 2,6-Me&H,) has disclosed the folded 
RI& core structure with two equatorial C,H,Me,-2,6 groups in a solid state, while the results of variable-temperature ‘H NMR 
study are diagnostic of the fluxional nature of complexes 3 in solution resulting from the Ru,S, ring inversion. Complex 3s 
(R = ‘Pr) underwent oxidative addition of RX (R = PhCH&H, or PhCH,, X = Br; R = Me or Et, X = I) and H, across the Ru, 
center to give [Cp’RuR(&Pr),RuCp*Xl (7) and [cp*RuH(~c-S’Pr),RuCp’Hl, respectively. The structure of 7a (R = 
PhCH,CH,, X = Br) has been determined by X-ray crystallography. Crystal data for 3e: space group P4,/mnm, a = 15.307(4) & 
c = 16.070(4) & V= 3765(2) R, Z =‘4; 70: space group P&/c, a = 10.348(2) & b = 15.113(2) A, c = 22.340(5) A, B = 93.10(2)“, 
V = 3488(l) K, z = 4. 

1. Introduction 

The development of a convenient method to pre- 
pare [Cp*RuCl,l, (1; Cp* = $-C,Me,) ill, which was 
initially formulated as a polymer or oligomer and then 
confirmed as a dimer [2], has led to recent rapid 
progress in the chemistry of Ru compounds containing 
the Cp*Ru unit. Because of our interest in the unique 
pattern of reactivity of the transition metal centers 
incorporated in metal-sulphur aggregates, transforma- 
tions of 1 into novel Ru complexes with sulphur ligands 
have been studied in detail. As reported in previous 
papers, 1 can serve as a versatile precursor to synthe- 
size a series of dimthenium complexes with bridging 
thiolate ligands; reactions of 1 with thiolate compounds 
afford diaqagnetic complexes such as [Cp*Ru@- 
SR),RuCp*lCl and [Cp’RuCl&-SR),RuCp*Cll [31, 
and paramagnetic complexes [Cp*Ru(p-SR),RuCp*] 
(2) [4], depending upon the reaction conditions (Scheme 
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1). Among these diruthenium complexes, 2 involving a 
formal Ru”/Ru*** pair exhibits the most intriguing 
reactivity. Thus [Cp*Ru(p-S’Pr),RuCp*] (2s) reacts 
readily with a variety of molecules including CO, 
‘BuNC, H,, and terminal alkynes to give either para- 
magnetic complexes [Cp*Ru(S’Pr&-S’Pr),RuCp*(L)] 
(L = CO, ‘BuNC) 141 or diamagnetic complexes 
[Cp*RuR’(p-SiPr),RuCp*R’] (R’ = H, alkynyl) [4,5]. 
Initial steps of these reactions presumably involve the 
generation of a coordinatively unsaturated Ru” center 
in situ upon dissociation of one bridging thiolate ligand 
from one Ru atom. 

Diruthenium complexes [Cp’Ru(p-SR),RuCp’] (3) 
are therefore another attractive set of candidates to be 
included in this class of ruthenium thiolate complexes 
inasmuch as they can provide a potential reaction site 
comprising two neighboring 16-electron Ru” atoms. In 
a previous paper [6], facile formation of [Cp*Ru(p- 
S’Pr),RuCp*l (3a) from [Cp*RuCll, (4) [7] or 
[Cp*Ru(p-OMe),RuCp*] (5) [2b,81 has been described 
briefly together with a novel oxidative trimerization 
reaction of Me,SiCkCH promoted at the diruthenium 
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center in 3a [9" ]. Here we wish to report the prepara- 
tion and detailed characterization of complexes 3 to- 
gether with reactions of alkyl halides and H E with 3a. 

2.  R e s u l t s  a n d  d i s c u s s i o n  

2.1. Syntheses o f  [Cp*Ru(Ix-SR)2RuCp*] (3) and X-ray 
structure o f  ICp*Ru(lz-SC6H3Me2-2,6)2RuCp*] (3c) 

We have previously reported that treatment of 1 
with excess NaSR (R = Et, ipr, PhCH 2, C6Hll, Ph) in 
MeOH gives paramagnetic diruthenium complexes 2. 
This reaction involves reduction of one Ru In atom in 1 
to Ru n by NaSR present in excess [4]. In contrast, 
reaction of 1 with excess NaStBu afforded a Ru II 

[Cp*RuCl] 4 
L i ~  ' '~ 4 

[Cp*RuCI2] 2 
1 ~ 2CO3 

McOH ',,a 

Cp* Ru....... RuCp* 

5 

complex formulated as [Cp*Ru(StBu)]~ but the details 
remained unexplored. We have now found that Ru II 
complexes [Cp*Ru(/~-SR)ERuCp*] O) can be readily 
prepared from the reactions of Ru n complexes 4 or 5 
with thiolate compounds (Scheme 2) and the dinuclear 
structure of 3 has been confirmed by the X-ray analysis 
of 3e (R = 2,6-MeEC6H3 ). 

Complex 4, dissolved in THF, rapidly reacted with 
excess NaSR at room temperature to give diamagnetic 
complexes 3 [10"] which were isolated in moderate 

* Reference number with an asterisk indicates a note in the list of 
references. 

3a: R =ipr 
3b:  R =tBu 
3c:  R = C6HaMe2-2,6 

Scheme 2. 
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Fig. 1. The molecular structure of [Cp*Ru(~-Sipr)2Ruep *] (3c). 

yields as an air-sensitive blue or purple crystalline 
solid. Complex 5 also serves as a precursor for 3; 
treatment of 5 with MeaSiSipr in THF readily afforded 
3a. Formation of 3 (R = Et, tBu, Si(OtBu)3 ) from the 
reaction of 5 with RSH has recently been reported 
independently by Koelle and his coworkers in a prelim- 
inary form [11]. To clarify the structure of 3, an X-ray 
analysis has been undertaken with a single crystal of 3c 
grown from its THF solution at -20°C, the result of 
which is depicted in Fig. 1. 

In 3c, there exist two mutually perpendicular mirror 
planes, one of which includes a Ru-Ru vector bisected 

by the other. Two mutually eclipsed Cp* ligands are 
distorted slightly to a c/s direction (dihedral angle: 15 °) 
and the C(1) and C(6) atoms in the Cp* ligand are 
present on the former mirror plane, while all non-hy- 
drogen atoms in the thiolate ligands are on the latter. 
The Ru-Ru distance (3.500(2) A) is much longer than 
those in diruthenium complexes with a Ru-Ru single 
bond bridged by two or three thiolate ligands as previ- 
ously reported (2.6-2.9 A) [3-5] and comparable to 
those without a Ru-Ru bond such as [Cp*Ru(/.t-SEX/~- 
Sipr)2RuCp *] (3.590(2) ,~) [12],. [(MeEPhP)3Ru(/~- 
SH)aRu(SH)(PMe2Ph) 2 ] (3.371(3) A) [13], and [Cp'Ru- 
(/.t,'r/2-S2X//,,l"/1-S2)RuCp'] (3.749(1) A; Cp' =or/5- 
C5Me4Et) [14]. The Ru-S bond length of 2.350(4) A in 
3c is slightly longer than the sum of the covalent radii 
of the Ru and S atoms (2.28 .~), suggesting the absence 
of the 7r-bonding interaction. These structural features 
in 3c are indicative of the coordinatively unsaturated 
16-electron configuration for the Ru atoms in this 
complex. It is to be noted that much shorter Ru-S 
bond distances have been observed in some electron- 
deficient thiolate complexes such as [Ru(SC6Me4H) 4- 
(MeCN)] and its derivatives (ca.  2.2 ,~) [15]. 

A four-membered RUES 2 ring is folded with dihe- 
dral angles of 131 and 139 ° along the Ru-Ru '  and 
S-S'  vectors, respectively. Due to this folding of the 
Ru2S 2 core, three isomers, v/z., syn(1), syn(2), and anti  

complexes, are anticipated for 3 with respect to axial 
and equatorial orientation of the substituents on the S 
atoms [16] (Scheme 3). The X-ray analysis shows that 
3c in a solid form exists as the syn(1) form with two 

S / R  

Cp*Ru RuCp* 

syn(1) 

J [sulphur inversion 

R 
I 

, x 

Cp* Ru ~ R ~ R / S ' ~  RuCp* 

ant i  

Cp*Ru / .  RuCp* 

ring inversion ~ ' ~  t S ~  
R 

syn(2) 

ring inversion 

J [sulphur inversion 

I R 

RuCp* 

anti  

Scheme 3. 
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equatorial C6H3Me2-2,6 groups exclusively. An analo- 
gous syn(1) structure has also been clarified for the 
closely related [Cp'Ru(/~-SEt)zRuCp'] (6) reported re- 
cently [11] and other 16-electron dinuclear complexes 
[(COD)Rh(/z-SPh)2Rh(CO) 2] [17], [(COD)Ir(/z- 
SPh)EIr(COD)] (COD = 1,5-cyclooctadiene) [18], and 
[Rh(CO)2(/z-SC6H4F-p)2Rh(CO)2] [19]. On the other 
hand, 18-electron Ru m complexes with a Ru-Ru sin- 
gle bond [Cp*RuY(p.-Sipr)2RuCp*Y] previously re- 
ported (Y = H [4], C-CC6H4Me-p [5]) and 
[Cp*Ru(CH2CH2Ph)(/z-Sipr)2RuCp*Br] (Ta) de- 
scribed below have the syn(2) structure with two axial 
ipr groups. Although X-ray structures of several dinu- 
clear complexes with two thiolate bridges are known, it 
is still difficult to rationalize the finely balanced factors 
determining the geometries. For example, complexes 
with mutually cis Cp ligands [CpFe(CO)(~- 
SPh)2FeCp(CO)] [20], [CpFe(CO)(/x-SMe)2FeCp 
(CO)] + [21], and [CpRh(/~-SPh)2RhCp] [22] have the 
syn(1), syn(2), and anti structures, respectively. Fur- 
thermore, [CpW(CO)E(/.t-Sipr)2WCp(CO)2] comprises 
c/s Cp ligands and two equatorial ipr groups [23], 
presenting a sharp contrast to [CpMo(CO)2(/~- 
SPh)EMoCp(CO) 2] with trans Cp ligands and one 
equatorial and one axial Ph group [24]. In [CpNi(/~- 
SPh)ENiCp], the Ni2S 2 core is planar and two Ph 
groups are trans to each other [25]. 

Comparison of the bonding parameters of 3c with 
those in 6 [11] and a methoxide analogue 5 [8] is 
noteworthy. Although the structural features with re- 
spect to the folded RUEE 2 core (E--S, O) and the 
syn(1) form of the 2,6-Me2C6H 3, Et, and Me groups 
are analogous in these three complexes, the Ru-Ru 
distance in 3c (3.500(2) ,A) is significantly longer than 
those in 6 (3.075(1) .A) and 5 (2.961(1) .~). This results 
in the much larger folding angle of two RuE 2 planes 
along the E -E  vector in 3c (139 °) than in 6 (114 °) and 5 
(124°). 

2.2. 11-1 NMR study of complexes 3 
1H NMR spectra of complexes 3 show one sharp 

singlet assignable to the methyl protons in the Cp* 
ligands. In addition to this resonance, 3c, in THF-d 8 
exhibits another singlet at 2.75 ppm due to the methyl 
protons as well as the peaks attributable to the aro- 
matic protons in SC6HaMe2-2,6 ligand at room tem- 
perature. The spectrum recorded at -70°C is essen- 
tially the same. This spectral feature of 3c suggests the 
presence of the fast interconversion between the syn(1) 
and syn(2) isomers due to a Ru2S 2 ring reversal in this 
whole temperature region which results in the averag- 
ing of two methyl groups in the thiolate ligand, al- 
though the syn(2) structure might be less favorable on 
steric grounds. Fluxional behavior of this class of com- 

plexes with a M2S 2 core has been demonstrated al- 
ready, which can be interpreted in terms of a ring 
reversal and a sulfur inversion (Scheme 3) [16]. In the 
complexes without a metal-metal bond, a ring reversal 
is commonly the lower energy process than a sulfur 
inversion, and non-rigidity observed for the related Rh 
[17,26] and Ir [18] complexes [(COD)M(/~-SPh) 2- 
M(COD)] cited above has been ascribed to the rapid 
ring inversion. 

In contrast to 3e, the spectra of 3a and 3b are 
temperature-dependent, indicating unequivocally the 
fluxional nature of these complexes in a solution state. 
Thus in the spectrum of 3a recorded at 100°C in 
toluene-d 8 there appeared a broad methyl doublet at 
1.62 and a very broad methine peak at 2.82 ppm 
assignable to the ipr group together with a sharp Cp* 
ringlet. These ipr resonances broadened further as the 
temperature decreased, and after collapsing at around 
10°C they were no longer detectable at lower tempera- 
tures or even at -70°C, although the Cp* resonance 
remained unchanged. In the spectra of 3b, the singlet 
at 1.69 ppm due to the tBu group observed at 80°C also 
broadened upon cooling but then it split into two 
singlets at 1.99 and 1.43 ppm with the same intensity. 
The sharp Cp* singlet did not vary over the whole 
temperature range investigated (Fig. 2). Appearance of 
only one Cp* resonance together with two tBu peaks 
with 1 : 1 intensity ratio suggests the anti form having 
one axial and one equatorial tBu groups as the favor- 
able structure of 3b at the slow exchange limit. The 
averaging of two tBu resonances at higher tempera- 
tures can be explained by the facile axial-equatorial 
interconversion due to the Ru2S 2 ring inversion. This 
might occur more rapidly in 3a, which probably pre- 
vents the ipr resonances assignable to the static anti 
species from detection on the NMR time scale even at 

- 70oc. 
These findings about 3 are quite analogous to the 

result of variable-temperature NMR study of Rh com- 
plexes reported previously [17], which has shown that 
complexes [(COD)Rh(/z-SR)2Rh(COD)] (R = tBu, iPr) 
with a rigid anti structure at low temperatures become 
fluxional at higher temperatures via Rh2S 2 ring inver- 
sion, while the 1H NMR spectra of [(COD)Rh(/~- 
SPh)2Rh(CO) 2] are diagnostic of the syn structure. 
However, free energies of activation for ring inversion 
in the tBu and ipr complexes (38-44 El tool -1) are 
smaller than that of 3b (55 El mol-1 at 10°C) calcu- 
lated from its 1H NMR spectra. 

It is to be noted that syn-anti interconversion has 
also been suggested to occur in several complexes such 
as trans-[CpRu(CO)(l~-SCH2Ph)2RuCp(CO)] [27] and 
[(OC)3Fe(/.~-StBu)2Fe(CO)2(L)] (L = CO, P(OMe) 3, 
PPh 3) [28]. This isomerization requires sulphur inver- 
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2.3. Oxidative additions of alkyl halides and hydrogen 
gas at the diruthenium center in 3a 

Because of the presence of two adjacent coordina- 
tively unsaturated Ru atoms, 3 might be expected to 
exhibit intriguing reactivities. As reported briefly, we 
have already found that 3a facilitates the novel oxida- 
tive oligomerization of Me3SiC=-CH [6], which has been 
extended further to a variety of alkynes. Now we report 
the oxidative addition of alkyl halides and H 2 gas to 
the diruthenium center in 3a. Exploitation of the reac- 
tivity of the methoxide analogue $ is progressing rapidly, 
which includes the reactions of 5 with molecules such 
as CO [2], olefins [29], etc., but little is known about 
the reactions of 5 with halocarbons and H 2. 

In our attempt to record the ~H NMR spectrum of 
3a, we observed the quantitative formation of 
[Cp*RuCI(/~-SiPr)2RuCp*CI] (811) [3] upon dissolution 
of 3a in CDCI3, although the other organic product(s) 
derived from CDC13 could not be clarified. Accord- 
ingly, we have studied the reactions of 3a with a series 
of alkyl halides and found that treatment of 3a dis- 
solved in hexane with one equiv of RX smoothly af- 
fords d i ru then ium complexes  [Cp*RuR( /z -  
Sipr)ERuCp*X] (7) at room temperature (eqn. (1)). 
Complexes 7 precipitated from the reaction mixtures 
and were easily separated by filtration. Since the single 
crystals of 7a (R -- PhCH2CH2, X = Br) were obtained 
by recrystallization from benzene/hexane, an X-ray 

-rrFT,-t-rrrn , i',",'~ l-ITl-rn-rrrrT' I ' ' i 

7' I ppm 2 I ppm 

Fig. 2. Variable-temperature 1H NMR spectra of [Cp*Ru(p.- 
StBu)2RuCp *] (3b). 

sion and the energy barriers for this process have been 
reported to be 58.7 kJ mol-1 for the former Ru com- 
plex and 65-77 kJ tool-x for the latter Fe complexes. 
Two mechanisms might operate in the sulfur inversion; 
one involves the planar transition state of the sulfur 
atom, while the other proceeds via an initial metal- 
sulfur bond dissociation and a subsequent rotation 
about the resulting terminal metal-sulfur bond fol- 
lowed by a metal-sulfur bond regeneration. However, 
in both syn-anti isomerizations referred to above, the 
latter mechanism is suggested to be plausible because 
it has a much lower energy barrier than the former. In 
3, isomerization involving a sulfur inversion might 
hardly take place because the latter lower energy pro- 
cess requires the formation of a 14-electron intermedi- 
ate. 

06) 

Fig. 3. The molecular structure of [Cp*Ru(CH2CH2Ph)(/z- 
Sipr)2RuCp*Br] (7a). 
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analysis has been carried out to determine the struc- 
ture. As shown in Fig. 3, 7a has two Cp*Ru units 

C p * R u . ,  RuCp* RX (1 eq~ 

' ~  ~ /  hexane 
.S .S 
~Pr ~Pr 

C p * R u ~  j R u C p *  
, /  k ~ , - /  \ (1) 
t,t .S ~ S  X 

'Pr 'Pr  

7a: R = PhCH2CH 2, X = Br 

7h: R = PhCH 2, X = Br 

7c: R =  Me, X =  I 

7d: R = Et, X = I 

bridged by two Sipr ligands and the remaining sites of 
two Ru atoms are occupied by PhCH2CH 2 and Br 
ligands, respectively. The RuzS 2 ring is folded but 
much closer to planar than in 3c, with a dihedral angle 
of 171 ° along the Ru(1)-Ru(2) vector. The R u - R u  
distance of 2.844(1) ,~ is indicative of the presence of a 
R u - R u  single bond, which is consistent with the dia- 
magnetic nature of 7 despite the formal oxidation state 
of + 3 for both Ru atoms. These structural features as 
we l l  as the mutually c/s configuration of two Cp* 
ligands and the syn(2) orientation with respect to two 
ipr groups are also observed in the other diruthenium 
complexes [Cp*RuY(/~-Sipr)2RuCp*Y] as described 
above ( R u - R u  distance: Y = H, 2.784(5) ,~ [4]; Y = 
C~-CC6H4Me-p, 2.809(3)/~ [5]). The Ru-S  distances of 
2.28-2.33 A are comparable to those in the previously 
reported thiolate-bridged diruthenium complexes with 
Ru in and Ru n centers [3-5,30]. The 1H NMR spectra 
of 7 are diagnostic of this structure clarified for 7a. 
Since neither two Cp* ligands nor two methyl groups 
in each Sipr ligand are equivalent in 7, the resonances 
attributable to the Cp* and ipr methyl protons appear 
as two singlets and two doublets, respectively. 

Complex 3a also reacted with H 2 gas (1 atm) at 
room temperature to give a dinuclear oxidative addi- 
tion product [Cp*RuH(/z-Sipr)2RuCp*H] (9) (eqn. (2)). 

Cp* Ru..,,x, RuCp* 

~Pr ~Pr 

H 2 (1 atm) ) 
THF 

Cp*Ru. x / R u C p *  / / \ 
to .S ~ " ~ S  H 

'Pr 'Pr  

(2) 

Synthesis of 9 from a paramagnetic complex 2a and H 2 
was reported previously [4], but the present reaction 
apparently demonstrates the more simple stoichiome- 
try free from the elimination of a thiolate ligand. 
Although the positions of the hydrides in 9 were not 

determined by the X-ray analysis due to the poor R 
values, not only the clarified bonding scheme of non- 
hydrogen atoms but the appearance of the medium 
v (Ru -H )  band at 1950 cm-  t in its IR spectrum strongly 
suggested the presence of two terminal hydrides in 
mutually c/s positions. Interestingly the related carbox- 
ylate-bridged diruthenium complexes [Cp*Ru(#-  
H)z(p,-O2CR)2RuCp*] derived from [Cp*Ru(/z- 
H)4RuCp*] and R C O O H  (R = CF3, Ph, etc.) have two 
bridging hydride ligands [31]. 

Reactivity of polynuclear complexes is a subject of 
significant interest, since it can provide a new method 
for activating substrates on cooperating metal centers 
and oxidative addition of H E and alkyl halides at a 
dimetal center is one of the interesting topics included 
in this area [32]. Formations of 7 and 9 from the Ru n 
complex 3a reported here therefore provide an inter- 
esting example of alkyl halide and H E addition. 

Related molecular H E addition to the dimetal cen- 
ter bridged by two thiolate ligands has been observed 
for the Ir complex [Ir(CO){P(OMe)3}(/z-StBu)EIr 
(CO){P(OMe)3}], giving [IrH(CO){P(OMe)3}(/~-StBu)2 
IrH(CO){P(OMe)3}] [33]. The mechanism proposed for 
this reaction involves initial oxidative addition of H 2 at 
one Ir atom and successive migration of one hydride to 
the other Ir atom associated with formation of a I r - I r  
bond (eqn. (3)). The MO study of H E addition to 
da/d 8 metal centers ( I r / I r  or R h / R h )  has demon- 
strated that this two-step mechanism initiated by 

Nl M + H  2 ~ H - M - H  l~l 

H -  M- - I~ I -H  (3) 

addition to a single metal is more realistic than the 
concerted addition to a dimetal center [34] and this 
result has been supported by experimental evidence in 
the analogous reactions of H 2 with Ir E complexes con- 
taining bridging diphosphine ligands [35]. By analogy, 
the reaction of [Rh(CO)(PMeEPh)(g.-StBu)2Rh(CO) 
(PMe2Ph)] with one equiv of MeI is believed to pro- 
ceed via initial oxidative addition at one Rh center, 
since a dirhodium complex [RhI(COMe)(PMe2Ph)( ~- 
StBu)2Rh(CO)(PMeEPh)] can be isolated from the re- 
action mixture [36]. These may suggest that 3a also 
undergoes oxidative addition of alkyl halides or H E at 
one Ru center and then isomerizes to 7 and 9. How- 
ever, several trials to detect or isolate intermediate 
stages were not successful for the present reactions and 
the details are still uncertain [37]. 

2.4. Thermal decomposition and related reactions of 
[Cp *Ru(CH2Ph)(lz-Sipr)2RuCp*Br] (7b) 

An interesting feature observed during the NMR 
study of 7 is that 7b (R = PhCH 2, X = Br) in a solution 
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state is less stable than the other three. Thus 7b 
dissolved in benzene-d 6 or THF-d 8 was gradually con- 
verted into a mixture of [Cp*RuBr(/~-Sipr)2RuCp*Br] 
(8b) and 3a even at room temperature. This reaction 
was substantially enhanced as the temperatures were 
raised and at 50°C it was almost completed within 2 h. 
The former Ru m complex 8b is less soluble in these 
solvents and was easily isolated from the reaction mix- 
ture (0.40 mol/mol 7b). This transformation of 7b into 
a mixture of 8b and 3a was accompanied by the forma- 
tion of PhCHzCH2Ph as the only detectable organic 
product in the reaction mixture, the yield of which 
reached 0.40 mol/mol 7b. This indicates that 80% of 
the PhCH 2 group present in 7b is converted into 
PhCH2CH2Ph. The stoichiometry of this reaction may 
therefore be described by eqn. (4), although the fate of 
the remaining 20% of the PhCH 2 moiety in 7b could 
not be clarified. A radical trapping experiment demon- 
strated the formation of the t BuN(CH2Ph)O radical 
upon warming a solution of 7b in benzene containing a 
spin trap, tBuNO. This suggests that the present reac- 
tion may be initiated by cleavage of the ruthenium- 
benzyl bond forming benzyl radical. It is of great inter- 
est that the ruthenium-benzyl bond in 7h is readily 
cleaved, although mononuclear benzyl complexes of 
transition metals are commonly much more stable than 
alkyl complexes having/3-hydrogens [38]. 

C p * R u ~  ..RuCp* a 

2 PhCH2/  . ~ S ~ S  / k'Br 
~Pr 'Pr 

as dialkyl complexes derived from 7, which will be 
reported in a subsequent paper. 

Cp*Ru.  RuCP* excess 
~S~'l~S / PhCH2Br 
~Pr 'Pr 

e x c e s s  

C p * R u ~  .,RuCp* / k ~ " /  ~n PhCH2Br 
PhCH2 .S .S t ~ r  

'Pr ~Pr 

C p * R u ~ R u C p *  

Br / . ~ S ' ~ . S  / XXBr 
'Pr 'Pr 

+ PhCH2CH2Ph (5) 

3. Experimental section 

All manipulations were carried out under nitrogen. 
Solvents and alkyl halides were dried and distilled 
before use. Compounds 4 [7], 5 [2b,8], and Me3SiSipr 
[39] were prepared according to published methods. 1H 
NMR spectra were measured on a JEOL JNM-GX-400 
spectrometer and EPR spectra were obtained at X- 
band frequencies on a JEOL JEX-FEIX spectrometer. 
GLC analyses were performed with a Shimadzu GC- 
14A Gas Chromatograph equipped with a HiCap- 
CBP10-M25-025 capillary column. 

C p *  / C p *  
R u c - - - - - -  Ru 

B r / ~ ? ¢ ~ .  S/XXBr 
'Pr 'Pr 

C p *  / C p *  
Ru - Ru 

+ ~ ]  + PhCH2CHEPh (4) 
S .S 
'Pr 'Pr 

Since the Ru n complex 3a is regenerated during this 
reaction, further addition of PhCH2Br into this reac- 
tion mixture resulted in the conversion of 3a into 7b 
and finally to 8b. Thus treatment of 3a or 7b with 
excess PhCH2Br at 50°C afforded PhCH2CH2Ph in 
moderate yields together with 8b as the only isolable 
product involving Ru (eqn. (5)); for example, the yields 
of 8b and PhCH2CH2Ph from the reaction of 7b with 
6 equiv of PhCH2Br were 0.97 and 0.74 mol/mol 7b, 
respectively. 

Further study is now in progress to clarify the details 
of the reactivities of alkyl groups in complexes 7 as well 

3.1. Preparation o f  [Cp*Ru(Iz-SiPr)2RuCp *] (3a) 
To a stirred suspension of 4 (720 mg, 0.662 mmol) in 

THF (30 cm 3) was added NaSiPr (520 mg, 5.30 mmol) 
at room temperature. A rapid color change from or- 
ange to greenish blue was observed. After stirring 
overnight, the mixture was dried in vacuo and the 
residue was extracted with hexane. A blue crystalline 
solid precipitated from the concentrated extract after 
storage at -20°C, which was collected by filtration and 
recrystallized from hexane (108 mg, 13%). Anal. Found: 
C, 49.10; H, 6.94. C26H44S2Ru 2 calc.: C, 50.13; H, 
7.12% [40*]. 1H NMR (toluene-ds, 100°C): 6 1.71 (s, 
30H, Cp*), 1.62 (br d, 12H, SCHMe2) , 2.82 (br, 2H, 
SCHMe2); see also text. 

Treatment of 5 dissolved in THF with 2 equiv of 
Me3SiSipr at room temperature resulted in an imme- 
diate change from wine red to blue. Evaporation of all 
volatile materials from the product solution in vacuo 
afforded 3a as a blue solid, whose 1H NMR spectrum 
showed that 3a thus obtained in almost quantitative 
yield is sufficiently pure to be employed in the subse- 
quent reactions. 
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3.2. Preparation of [Cp*Ru(I~-StBu)2RuCp*] (3b) 
This complex was prepared by the reaction of 4 (885 

mg, 0.814 mmol) with NaSIBu (2.43 g, 19.9 mmol) in 
THF (15 cm 3) or treatment of 1 (333 mg, 0.542 mmol) 
with NaStBu (1.04 g, 8.19 mmol) in MeOH (5 cm3). 
Analogous workup of the reaction mixtures to that for 
3a  a f forded  3b as a blue microcrystalline solid in 66 
and 80% yields, respectively. Subsequent recrystalliza- 
tion from C6H6/MeCN afforded 3b in an analytically 
pure form. Anal. Found: C, 51.48; H, 7.33. 
C2sH48S2Ru 2 calc.: C, 51.66; H, 7.43%. 1H NMR 
(C6D6, 60°C): t~ 1.78 (S, 30H, Cp*), 1.69 (s, 18H, StBu); 
see also text. 

1.45 (d, 6H each, SCHMe2), 4.30 (sep, 2H, SCHMe2), 
6.9 (m, 5H, Ph), 2.06 (s, 2H, RuCH2). 

3.6. Preparation of [Cp*RuMeOz-SiPr)2RuCp*I] (7c) 
This complex was isolated as a purple solid by an 

analogous method, by reaction of 3a  (142 mg, 0.228 
mmol) in hexane (5 cm 3) with MeI (32.3 mg, 0.228 
mmol) for 1 h. The product was recrystallized from 
THF/hexane (80 mg, 46%). Anal. Found: C, 41.63; H, 
5.98. C27H47IS2Ru2 calc.: C, 42.40; H, 6.19%. 1H 
NMR (C6D6): 8 1.53 and 1.60 (s, 15H each, Cp*), 1.27 
and 1.70 (d, 6H each, SCHMe2), 4.50 (sep, 2H, 
SCHMe2), 0.82 (s, 3H, RuMe). 

3.3. Preparation of [Cp*Ru(I~-SC6H3Me2-2,6)2RuCp *] 
(3c) 

This complex was prepared in an analogous manner 
by the reaction of 4 (60 mg, 0.055 mmol) with 
NaSC6HaMe2-2,6 (54 mg, 0.34 mmol) in THF (4 cm3). 
A purple crystalline solid obtained from the hexane 
extract at -20°C was recrystallized from cold THF, 
giving 19 mg of 3c as single crystals (23%). Anal. 
Found: C, 56.11; H, 6.24. C36H4sS2Ru2 talc.: C, 57.88; 
H, 6.48%. 1H NMR (THF-d s, r.t.): 8 1.27 (s, 30H, 
Cp*), 2.75 (s, 12H, C6HaMe2-2,6), 7.09-7.23 (m, 6H, 
C6HaMe2-2,6). 

3.4. Preparation of  [Cp*Ru(CH2CH2Ph)(I~-Sipr)2 - 
guCp*Br] (Ta) 

Into a solution of 3a  (486 mg, 0.78 mmol) in hexane 
(8 cm 3) was added PhCH2CH2Br (174 mg, 0.94 mmol) 
at - 78°C and the mixture was stirred at room temper- 
ature for 7 h. A brown-yellow solid deposited was 
filtered off, washed with hexane, and then dried in 
vacuo. Recrystallization from benzene/hexane af- 
forded 283 mg of 7a (43%). Anal. Found: C, 50.24; H, 
6.56. C34H53BrS2Ru calc.: C, 50.54; H, 6.61%. 1H 
NMR (THF-ds): 5 1.63 and 1.76 (s, 15H each, Cp*), 
1.38 and 1.45 (d, 6H each, SCHMe2), 3.81 (sep, 2H, 
SCHMe2), 7.0 (m, 5H, Ph), 2.43 (pseudo t, 2H, 
PhCH2), 1.04 (pseudo t, 2H, RuCH2). 

3.5. Preparation of  [ Cp * Ru ( CH 2 Ph ) (Iz-S i pr ) 2 RuCp *Br] 
(Tb) 

This complex was isolated according to the proce- 
dure for 7a as a brown solid from the reaction of 3a  
(322 mg 0.515 mmol) in hexane (10 cm 3) with PhCH2Br 
(88.5 mg, 0.515 mmol) for 15 min (303 rag, 74%). 
Complex 7b was always contaminated with a trace of 
8b which was formed by decomposition of the former 
(vide supra). Anal. Found: C, 48.05; H ,  6.37. 
C33H51BrS2Ru2 calc.: C, 49.92; H, 6.37%. 1H NMR 
(THF-d8): 8 1.43 and 1.63 (s, 15H each, Cp*), 1.42 and 

3.Z Preparation of [Cp *RuEt(l~-siPr)2RuCp*I] (7d) 
This complex was isolated in an analogous way, as a 

purple solid, by treatment of 3a  (393 rag, 0.63 mmol) in 
hexane (10 crn 3) with EtI (217 mg, 1.39 mmol) for 3 h. 
The product was recrystallized from toluene/hexane 
(82 mg, 11%). Anal. Found: C, 42.56; H, 6.05. 
C28H49IS2Ru 2 calc.: C, 43.18; H, 6.34%. 1H NMR 
(C6D6): 8 1.56 and 1.59 (s, 15H each, Cp*), 1.40 and 
1.74 (d, 6H each, SCHMe2), 4.26 (sep, 2H, SCHMe2), 
1.19-1.25 (m, 5H, Et). 

3.8. Preparation of [Cp*RuH(I~-SiPr)2RuCp*H] (9) 
from 5 via 3a 

Complex 3a, prepared from 5 (670 mg, 1.23 mmol), 
and MeaSiSipr (375 mg, 2.51 mmol) were dissolved in 
THF (20 cm 3) and H 2 gas was bubbled through the 
solution for 10 min. After removal of the solvent in 
vacuo, the resultant solid was purified by chromatogra- 
phy through alumina eluting with benzene/hexane 
(2/1). Evaporation of the solvent from a single blue- 
green band afforded 9 [4] as a green solid (560 mg, 
73% based on 5). 

3. 9. Dynamic NMR calculations 
The rate constants k were determined from the line 

widths at half-height observed for the tBu resonances 
in the variable-temperature 1H NMR spectra, where 
the line width at -70"C (2.7 Hz) was employed as the 
value of the slow exchange limit. Parameters of the 
activation energy were derived from a plot of ln (k /T)  
vs. 1 / T  ( A H = 5 3  kJ mo1-1, A S = - 2 . 5  J tool -1 
deg- 1). 

3.10. Thermal decomposition of  7b in the presence of  a 
spin trap 

Complex 7b, tBuNO, and benzene were charged in 
a quartz tube at -196"C and the tube was sealed in 
vacuo. The EPR spectrum of this mixture recorded at 
50°C exhibited a strong septet with an intensity ratio of 
1 : 2 :  2 : 2 : 2  : 2 : 1 assignable to tBuN(CH2Ph)O radical. 
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The  coupl ing constants  observed ( A  s = 14.6 G and 
A H = 7.3 G) are in good  ag reement  with those repor ted  
previously [41]. 

3.11. X-ray crystallography of  3c 
A single crystal o f  3c obta ined  f rom its sa turated 

solution in T H F  at - 2 0 ° C  was sealed in a glass capil- 
lary unde r  Ar  and m oun t e d  on a M A C  MXC-18  
diffractometer .  The  or ientat ion matr ices and unit  cell 
pa ramete r s  were  calculated by least-squares t rea tment  
o f  19 machine-cent red  reflections (25 < 20 < 30°). Da ta  
collection was carr ied out  at room tempera tu re  and 
three  check reflection intensities measured  every 100 
reflections exhibited no decay. Intensi ty data  were  cor- 
rec ted  for  the Lorentz-polar iza t ion effect and for  ab- 
sorption. Crystal lographic data  are summarized  in 
Table  1. 

Structure  solution and ref inement  were pe r fo rmed  
by using the tJNix-m program package [42] at the 

C o m p u t e r  Cen te r  o f  the University o f  Tokyo.  The  
positions of  the R u  and S atoms were  revealed by the 
direct  methods  p rogram SHELXS-86 [43] and all remain-  
ing non-hydrogen  atoms were found by successive dif- 
ference Four ier  maps. These  a toms were refined 
anisotropically by using block-diagonal  least-squares 
techniques.  Atomic  scattering factors were  taken f rom 
ref. 44. Structure  solution and ref inement  were tried by 
selecting the space group of  both P42/mnm and 
P42nm, which afforded essentially the same results 
and  the space g roup  o f  the  higher  symmet ry  
(P42/mnm) was chosen. Selected bond  distances and 
angles are shown in Table  2. 

3.12. X-ray crystallography for 7a 
A single crystal o f  7a obta ined  f rom b e n z e n e /  

hexane was sealed in a glass capillary under  Ar  and 
m o u n t e d  on a Rigaku AFC-5S diffractometer .  The  
or ienta t ion matr ices and unit  cell parameters  were 

TABLE 1. Details of X-ray crystallography for [Cp*Ru(/z-SC6H3Me2-2,6)2RuCp* ] (3c) and [Cp*Ru(CH2CH2Ph)(p,-Sipr)2RuCp*Br] (7a) 

3c 7a 

(a) Crystal data 

formula C~H¢SzRu2 C34H53BrS2Ru e 
fw 747.0 808.0 
cryst system tetragonal monoclinic 
space group P42/mnm (No. 136) P21/c (No. 14) 
cryst color purple-blue violet 
a/.~ 15.307(4) 10.348(2) 
b/A 15.307(4) 15.113(3) 
c/A 16.070(4) 22.340(5) 
fl/* 90 93.10(2) 
V/A 3 3765(2) 3488(1) 
Z 4 4 
Dcalcd/g cm -3 1.32 1.54 
F(000)/electrons 1536 1648 
/./,calcd/cr fl - 1 9.14 21.20 
cryst dimens/mm 0.35 x 0.40 × 0.50 0.30 × 0.30 x 0.08 

(b) Data collection 
diffractometer MAC MXC-18 Rigaku AFC-5S 
monochromator graphite 
'radfi 0t / / ' ,~ Mo Ka  (0.7107) 
temp room tempe~rature 
20 max / °  ~$ 5~0 
scan method t0-20  scan oJ-20 scan 
scan s p e e d / °  m i n -  x 16 16 
reflecns measd + h, + k, + 1; h ~ k + h, + k, + 1 
absorptn correctn Gaussian integration 0 scan method 

method 
transmission coeff 0.784-0.802 0.67-1.0 
data used 1262 (F o > 3~(Fo)) 2994 (I > 3or(1)) 

(c) Structure solution and refinement 
no of parameters 146 352 
R a 0.075 0.044 
Rw b 0.086 0.033 

• o 

max reslduals/e A -3 1.1 0.71 

a R = E II Fol - lEe II/EI Fo I. b Rw = [EW(I Fo I - I Fc I)2/~,W[Fo 1211/2; w = 1 for 3e and 1/o'2(Fo) for 7a. 
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TABLE 2. Selected bond distances (.~) and angles (°) in [Cp*Ru(/z-SC6HaMe2-2,6)2RuCp*] (3c) and [Cp*Ru(CH2CH2PhX/.~-Sipr)2RuCp*Br] 
(7a) 

3e 
Ru . . -  Ru 3.500(2) S-Ru-S'  74.9(2) 
Ru-S 2.350(4) Ru-S-Ru'  96.8(4) 
Ru-C(1) 2.15(2) Ru-S-C(l l )  121.0(4) 
Ru-C(2) 2.14(1) 
Ru-C(3) 2.12(1) 
S-C(11) 1.78(2) 

7a 
Ru(1)-Ru(2) 2.844(1) S(1)-Ru(1)-S(2) 104.25(9) 
Ru(1)-S(1) 2.296(2) S(1)-Ru(2)-S(2) 102.12(9) 
Ru(1)-S(2) 2.284(3) Ru(1)-S(1)-Ru(2) 76.04(8) 
Ru( 1 )-C( 1 ) 2.152(8) Ru(1 )-S(2)-Ru(2) 76.15(8) 
Ru(2)-Br 2.575(1) S(1)-Ru(1)-C(1) 86.8(2) 
Ru(2)-S(1) 2.321(3) S(2)-Ru(1)-C(1) 92.1(2) 
Ru(2)-S(2) 2.327(3) S(1)-Ru(2)-Br 92.81(7) 
Ru(1)-C(101) 2.208(9) S(2)-Ru(2)-Br 93.82(7) 
Ru(1)-C(102) 2.196(9) Ru(1)-S(1)-C(ll) 120.2(3) 
Ru(1)-C(103) 2.283(8) Ru(2)-S(1)-C(ll) 117.3(3) 
Ru(1)-C(104) 2.384(9) Ru(1)-S(2)-C(21) 121.1(3) 
Ru(1)-C(105) 2.298(9) Ru(2)-S(2)-C(21) 117.4(4) 
Ru(2)-C(201) 2.24(1) Ru(1)-C(1)-C(2) 126.6(7) 
Ru(2)-C(202) 2.23(1) C(1)-C(2)-C(3) 112.2(8) 
Ru(2)-C(203) 2.20(1) 
Ru(2)-C(204) 2.20(1) 
Ru(2)-C(205) 2.18(1) 
S(1)-C(ll) 1.841(9) 
S(2)-C(21) 1.838(9) 

der ived  f rom the  l eas t - squares  fit o f  25 mach ine -  
c e n t e r e d  ref lec t ions  with 20 < 20 < 30 °. No  signif icant  
decay  was obse rved  for  t h r ee  check ref lec t ions  mea -  
su red  every 150 ref lect ions .  In tens i ty  da t a  were  cor-  
r e c t ed  for  the  Lo ren t z -po l a r i za t i on  effect  and  for  ab- 
sorpt ion .  Crys ta l lographic  da t a  a re  l is ted in Tab le  1. 

Al l  ca lcula t ions  were  p e r f o r m e d  with TEXSAN crys- 
t a l lograph ic  sof tware  [45]. The  s t ruc ture  was solved by 
the  d i rec t  m e t h o d s  p r o g r a m  Mm-IRm [46]. Al l  non-hy-  
d r o g e n  a toms  were  r e f ined  an iso t rop ica l ly  by ful l -ma-  
tr ix l eas t - squares  techniques .  H y d r o g e n  a toms  were  
inc luded  at  the i r  ca lcu la ted  pos i t ions  with fixed 
iso t ropic  t e m p e r a t u r e  factors.  Se lec ted  bond  d is tances  
and  angles  a re  summar i zed  in Tab le  2. 

4. Supplementary material available 

A f igure  of  the  E P R  spec t rum of  t B u N ( C H z P h ) O  
radical ,  t ab les  of  a tomic  coord ina tes ,  an i so t rop ic  t em-  
p e r a t u r e  factors ,  and  extensive b o n d  lengths  and  angles  
in 3e and  7a, and  l ist ings of  obse rved  and  ca lcu la t ed  
s t ruc ture  factors  for 3e and  7a a re  avai lable  f rom the  
au thor  (M.H.)  u p o n  request .  
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